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ABSTRACT
Banners are present in several forms and a person might be
inspired by one or more of these. However, designing banners
is a non-trivial task, especially for novices. Starting from
a blank canvas can often be overwhelming, and exploring
alternatives is time-consuming. In this paper, we propose an
automatic approach to transfer a novice user’s content into
an example banner. Our algorithm begins with extracting the
template of the example banner via a semantic segmentation
approach. This is followed by an energy-based optimization
framework to combine multiple design elements and arrive at
an optimal layout. A crowd-sourced experiment comparing
our automatic results against banners designed by creative
professionals indicates the viability of the proposed work.

ACM Classification Keywords
B.7.2. Design Aids: Layout; H.5.2. User Interfaces: Screen
Design

Author Keywords
style transfer, single page graphic design, banner design,
design automation

1. INTRODUCTION
In the digital era, there exists a plethora of designs and banners
in the form of flyers, advertisements, hoardings etc. These ban-
ners have become important means of visual communication
to mass audiences. Designing and refining banners requires
conveying the content in a succinct and visually pleasing man-
ner. This is a non-trivial task even for experienced designers
and creating banners from scratch is a time-consuming pro-
cess. The traditional approach is to leverage existing designs
as building blocks to develop new ones. Therefore, creative
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professionals often use curated example galleries that serve as
inspirations for designing alternatives [7, 13].

Given the ubiquitous nature of such designs, a novice user
might be inspired by the designs of banners they interact with
and would want to use them with their own content. However,
this becomes a tedious task if the corresponding template is
unavailable. Even if the template is available, transforming
them based on his content while simultaneously satisfying
aesthetic intent requires professional skills that involve an un-
derstanding of the factors that contribute to banner aesthetics.
In the absence of appropriate automation tools, such processes
are quite challenging for novices.

In this paper, we propose a two-fold technique to automate the
transfer of user’s content into the design(s) of exemplar ban-
ner(s). The proposed algorithm extracts the design template
by performing a semantic segmentation of the input banner
image. These segments are then used to identify the underly-
ing design elements (such as the image/text/shape placeholder
locations, size, etc.) using a region-based clustering approach
yielding an editable template where the user can insert his
content to achieve the experience transfer. The final step of
our algorithm is to identify the salient aspects of a banner from
a set of sample corpus and utilize them to fine tune the layout
for better overall aesthetics via an energy-based optimization.

2. RELATED WORK
One line of work that is relevant to our problem deals with
extracting templates from images. Betramelli et al. [4] is
aimed at extracting templates of interfaces from its screenshots
using an RNN-based architecture. However, their approach
was restricted to simpler interfaces with lesser degrees of free-
dom and obtains only approximate estimates of the elements’
locations. To be able to produce an editable template, accurate
locations of all design elements of the banner is required.

Closely related to template extraction are works on seg-
mentation and object detection. Semantic segmentation is
the task of classifying each pixel of an image into various
types/categories. Long et al. [20] proposed Fully Convolu-
tional Neural Networks (FCNN) for semantic segmentation
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and showed that convolutional networks trained end-to-end
exceed the state-of-the-art in semantic segmentation. Semantic
segmentation, however, is limited to identifying the seman-
tics of the image at a pixel level and does not directly yield
templates requiring additional processing to extract design
element information from the identified segments. Object de-
tection algorithms, on the other hand, directly yield bounding
boxes and can be useful in finding the locations of the detected
design elements. Notable works in object detection include
Regions with CNN features [12], its variants like Fast R-CNN
[10], Faster R-CNN [26], Mask R-CNN [12] and R2CNN
[16]. Mask R-CNN [12] first identifies the semantic regions
of various objects followed by identifying the bounding boxes
(masks) corresponding to these regions. Due to the recent suc-
cesses of the Mask R-CNN and FCNN frameworks as strong
baselines in segmentation and detection tasks, we explore both
these frameworks for extracting the templates of banners.

Another line of related works involve optimization of layouts.
A growing body of recent work focuses on automating this
process in the context of website and documents. Bricolage
[17] automates the website creation process by transforming
the content of one webpage into the style and layout of another.
This is achieved by creating correspondences between the Doc-
ument Object Model (DOM) elements of two webpages. Such
a technique cannot be employed for banners due to the ab-
sence of a DOM tree structure. In interface designing, Gajos
et al. [9] specify the positions and categories of widgets and
use a margin-based approach to set weights of the objective
functions to learn model parameters. Swearngin et al. [27]
introduce Rewire, a system that automatically reconstructs
vector representations from screenshots of interfaces and lever-
ages them to provide assistance to designers in creating new
designs. Their reconstruction process involves low-level im-
age processing based on UI-specific techniques and can not be
generalized. Todi et al. [28] propose a layout restructuring of
websites to make it more familiar to users and aid navigation.
Adaptive layouts for documents have used grid-based tem-
plates for individual elements [14], probabilistic models for
document composition [8] and genetic algorithm framework
to personalize documents [25]. However, they deal with sim-
ple documents primarily involving text that support a linear
read-order and easily conform to templates. Banners, however,
are less structured and composed of free-form placement of
text and image elements. Such semantic and structural differ-
ences between banners and the experience synthesized in these
explorations make these approaches not trivially extendable
for banner re-purposing.

The sub-field of layout problem most similar to our problem
is the optimization of single-page graphic designs. Early
works in this domain was automatic designing of magazine
covers by analyzing visual saliency of photographs to posi-
tion text [15]. A common approach in layout structuring is
to define measures of aesthetic requirements and optimize
layouts to minimize these measures. Various energy func-
tions to quantify alignment of documents [3, 2], visual weight
and balance of layouts [19], aesthetics of interfaces [22] and
heuristics like balance and uniformity of documents [11] have
been put forth. Vollick et al. [29] proposed an energy-based

approach to model layouts of labels in technical diagrams.
Non-linear inverse optimization [18] have been commonly
explored to learn model parameters from training data. Label
layout, however, is a relatively simpler problem where text
elements are distributed around a background image. Zhang
et al. [32] proposed techniques to automatically generate ban-
ners of different sizes adhering to learned style parameters.
But they primarily work on reflowing the banner content into
different sizes and do not deal with optimization for news
content. Along these lines, Donovan et al. [24] introduced an
energy-based model derived from design principles to synthe-
size different versions of single-page graphic designs and have
extended their method to a user-interactive mode [23]. We
deploy the energy-based framework of [24] for defining energy
functions in the context of banners and optimizing elements
from multiple banners into a single layout.

3. EXEMPLAR BASED EXPERIENCE TRANSFER
Our proposed algorithm of transferring a user’s target experi-
ence into an exemplar banner consists of two key steps. The
underlying design elements (text boxes, shapes and images)
are first extracted from the banner images to build an editable
template where the user can add his own content. For this, we
explore two alternate configurations. The first configuration is
based on an initial semantic segmentation of the banner image
into salient regions via a fully convolutional neural network
(FCNN) [20] followed by utilizing the segmentation to extract
key design elements. Our alternative configuration employs
the Mask R-CNN [12] framework to extract the key elements
in the input banner. Similar to FCNN, Mask R-CNN starts
with a Region Proposal Network that segments the different
regions in the input. In addition to identifying the class of each
region, the Mask R-CNN also identifies the bounding boxes
for the identified region, thus yielding the design elements
directly. Both these configurations facilitate the extraction
of the underlying template of the banner image and enable
replication of an exemplar banner with different content.

Once the template is extracted, it is possible to insert the user
content into the template by matching the type of content (im-
age to image fields, and so on). However, since the content is
different, it might result in misalignment and overflows thus
affecting the overall aesthetics of the banners. To address
this, the second step of our algorithm tunes the content-filled-
elements to produce a banner that satisfies various aesthetic
goals. We formulate this as an optimization problem where a
set of energy functions are introduced to quantify the aesthet-
ics of a template. The energy functions are smoothed and a
weighted sum is used towards defining the overall ‘goodness’
of a banner. The weights of the energy functions are learned
via a non-linear optimization [18] based on the corpus of ex-
emplar banners. The energy function thus learned is used in a
simulated annealing setup to optimize the new layout of the
banner with replaced content. Figure 3 shows the complete
schematic of the sequence of steps in the proposed framework.

4. TEMPLATE EXTRACTION
Given an image of the banner, template extraction identifies
the design elements of the banner along with their positional
details that can be used to transfer the user’s content into the
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Figure 1: Schematic of the proposed approach

banner. We explore two state-of-the-art frameworks in image
segmentation (Fully Convolutional Neural Networks) and ob-
ject detection (Mask R-CNN) for identifying the elements of
the input banners.

4.1 Fully Convolutional Neural Network (FCNN)
Unlike a fully-connected network, FCNN is capable of re-
taining spatial information and can easily extend to inputs of
arbitrary sizes. FCNN layers are of the form,

yi j = fks
(
{xsi+δi,s j+δ j}0≤δi,δ j≤k

)
Where x is the input to the corresponding layer and y is
the output of the layer, k is the kernel size and s is the
stride/subsampling factor. fks determines the type of the layer.
fks could be matrix multiplication for convolution, or average
pooling and spatial max for max pooling, or an element-wise
nonlinear function for activation, depending on the type of the
layer. The end-to-end network is optimized to minimize the
pixel-wise cross-entropy loss between the input banner and
the corresponding output annotation.

To accurately represent the design elements, the extracted tem-
plate should specify the rectangular bounding box for each
of the elements. Since the output of FCNN does not directly
yield this, the semantic segmentation output is processed to
extract the bounding boxes for each identified element. More-
over, the layout of banners may have overlapping elements (for
example, text on top of shape) while semantic segmentation
assigns a single label to each pixel. We, therefore, devise a
mechanism based on connected components to process the
segmentation output and extract the exact position, size and
other meta details of the underlying design elements.

From every segmented pixel, we deploy a Depth-First Search
(DFS) around its neighbourhood to identify a bounding box
for the corresponding design element encompassing the cur-
rent pixel. Since the bounding box search does not limit the
selection of a pixel in multiple elements, this allows for over-
lapping elements to be identified. Bounding boxes less than
a threshold (in size) were rejected to control the noise in se-
mantic segmentation. The algorithm outputs a set of elements
in the banner along with the respective bounding boxes and
location, yielding the final template with the required layout
information. Algorithm 1 summarizes the sequence of steps to
extract the template from the semantically segmented banners.

4.2 Mask Region-based Convolutional Neural Network
The Mask Region-based Convolutional Neural Network (Mask
R-CNN) [12] extends from Faster Region-based Convolutional

Algorithm 1 Design Element Extract

Input I = Image output of semantic segmentation
Initialize L = /0
while there is an unvisited pixel do

Run DFS from the unvisited pixel N to find a connected
component C

Maintain the 4 points of C closest to the 4 corners of I
in Box while running DFS

L.append(Box)
Filter L based on region size
return L

Neural Network [26] and adds an additional branch for pre-
dicting segmentation ‘masks’ on every region of interest (RoI),
along with classifying the region. The mask layer is based on
a Fully Convolutional Neural Network applied to each RoI,
predicting the segmentation mask in a pixel-to-pixel manner.
Thus, Mask R-CNN yields the bounding boxes for every iden-
tified segment and unlike FCNN, additional processing is not
required to extract these boxes. To allow for overlapping ele-
ments, we followed [12] to independently classify the masks
for each identified regions. Further, Mask R-CNN also de-
couples the mask-identification from the region classification,
resulting in smoother masks (and hence bounding boxes).

4.3 Evaluating Template Extraction
In order to train our frameworks, we used a dataset of ∼
140k banner images that range over a wide variety of topics
and styles created by non-expert users of a design software.
Every banner has an associated manifest file that includes
information about the design elements in the banner, their
position and orientation in the banner, and other meta-data
like font type and font size for text descriptions and colour for
shapes. Although there are various components in a banner,
we specifically focus on modelling the layout, i.e, the positions
and scales of different design elements. To train the FCNN
and Mask R-CNN models, we process the manifest files and
generate pixel-wise ground truth annotations for the banners
by marking various regions of the banners. The dataset is
divided in train (80%), validation (10%) and test (10%) sets.

Figure 2: Sample banner from our dataset and its manifest file

Table 1 shows the performance of the various frameworks on
our dataset. The FCNN based model outperforms the other
settings in overall segmentation. However, since the plain
FCNN model only computes the pixel-wise segmentation, it
cannot be directly used as an editable template. For template



Figure 3: Example depicting the layout extraction framework (a) Input image (b) Semantic segmentation output (c) Design element
extraction (d) Ground truth annotation (e) Transformation with user content

extraction, it can be seen that the FCNN segmentation fol-
lowed by the region-based clustering via DFS outperforms
the Mask R-CNN setting in terms of F1 scores although the
accuracy scores are comparable between the two settings. This
is perhaps due to the superior ability of FCNN in identifying
the regions than the Mask R-CNN cascading to the template
extraction.

Accuracy F1 Score

FCNN 0.83 0.61
FCNN + Template Extraction 0.80 0.58

Mask R-CNN 0.79 0.50

Table 1: Results of template extraction

Fig 3 shows the output from various stages in our template
extraction and how an experience can be synthesized by trans-
ferring new content into the exemplar banners. While we have
not considered extracting the font style here, existing work
like [30] can easily be incorporated into our framework to
recognize and transfer font styles from sample banners.

5. ENERGY-BASED OPTIMIZATION
While the element extraction yields the underlying templates
for input banners, adding user’s content in these template can
offset the underlying design. This calls for a way to fine-tune
the content-transferred banner. We extend the energy-based
optimization framework of [24] for fine tuning the layouts.
The framework optimizes a non-linear energy function that
encapsulates various aspects of design via simulated anneal-
ing. We extended various energy functions from [24] for our
purpose and learn their combination via a non-linear hyperpa-
rameter optimization [5] based on the samples in our corpus.

5.1 Energy Functions
Peter et al. [24] define a set of energy functions to measure
the goodness of a layout on various dimensions. We adapt
different components of these energy functions Ei for our
problem. The composite energy function’s hyperparameters
θ comprises of [w,α]. w are the weights given to different
energy functions in the weighted sum that yields the final
energy. Each component energy function is smoothed via a
sigmoid function S(·;α) to map it to a value between 0 and
1. The parameter α is used to smoothen the sigmoid function
and determine how the changes in energy should be mapped
between 0 and 1. A smaller value of α makes the sigmoid
function smoother, whereas a larger value takes it closer to a

step function. Fig. 4 shows the mapping for different α values.
The overall energy of a layout is given by a weighted sum of
individual energies,

E(X;θ) = ∑
i

wiEi(X;αi).

The hyperparameters w,α are learned via a non-linear opti-
mization as described in the next sub-section. Here, we outline
the different terms that constitute our energy.
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Figure 4: Sigmoid function mapping for different α

Correct alignment is an important aspect that portrays an or-
ganized representation, which in turn adds to the aesthetic
value. We considered Left, Right, X-center, Y-center and Bot-
tom alignments, which are depicted in Figure 5. The design
elements of typical banners can be grouped such that the el-
ements within a group are aligned together. The alignment
energy term measures the fraction of element pairs that can be
bracketed together under the same alignment type,

Ea
align =−S

(
1
n2 ∑

i∈(all)

(
∑

j∈(all)
Ia
i j

)
;α

a
align

)
where n denotes the total number of elements, Ia

i j indicates if
elements i and j are aligned by type a.

The group energy encourages aligned element pairs to be
clustered together under a common type of alignment. This
promotes symmetry in the banner and is visually appealing.

Ea
group =−S

(
1

nm ∑
g

∑
i∈(all)

Ii
g;α

a
group

)
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Figure 5: Types of alignments considered

where n and m are the number of elements and alignment
groups respectively and Ii

g indicates if element i belongs to
alignment group g.

Minor misalignment between two elements is visually dis-
comforting as well as distracting. To accommodate for this, we
use a misalignment energy term that heavily penalizes element
pairs that are slightly off from alignment.

Ea
misalign =

1
3n2 ∑

a
∑

i∈(all)
∑

j∈(all)
Ia
i jC(da

i j)

Here, da
i j is a measure of the misalignment, i.e, minimum

distance to align the elements and C(·) is the cost function.
We used C(d) = 5arctan

( d
0.015

)
heavily penalizing even minor

misalignments.

A good layout finds a good mix of whitespace and limited
spread [31]. To account for these in our energy functions, we
encourage whitespace via a negative fraction of the total pixels
that are occupied, given by,

Ewhitespace =−S

(
∑p Ip

wh
;αwhitespace

)
where Ip is an indicator of whether a pixel p has any ele-
ment or not and (w,h) are the width and height of the image
respectively.

While whitespaces are good, too much white space can be
visually displeasing. We, therefore, penalize the spread via
another energy component given by,

Espread = S

(
1
n2 ∑

i∈(all)
min
j∈(all)

Di j;αspread

)
where Da

i j is the euclidean distance between elements i and j.

Our final energy component penalizes overlap between ele-
ments and is given by the sum of overlapping pixel area across
all combination of elements.

Ea
overlap = S

(
∑p Ap

wh
;α

overlap

)

where Ap is an indicator of any overlap at pixel p and (w,h)
are the width and height of the image respectively.

5.2 Layout Learning
The objective of defining the energy functions is to measure
various aspects of the layouts. While the proposed energy func-
tions are not exhaustive, it measures various visual aspects
of the banner. Due to the non-linearity of the energy func-
tion, the parameters θ = [w,α] can neither be estimated easily
nor can be set empirically. We, therefore, use a non-linear
hyper-parameter optimization framework based on random-
ized search [5] to learn the appropriate θ from our training
corpus of designs. These parameters are updated iteratively
based on a non-linear inverse optimization [18] framework.

It is assumed that XT is optimal for some unknown θ and in
order to estimate this parameter θ , we minimize the energy
difference between the example layouts XT and the optimal
layout for an unknown θ . This is given by the energy function,

G(θ) = E(XT ;θ) - min
X

E(X;θ)

Since the optimization is non-linear, we follow an alternating
minimization approach where θ and XT are updated itera-
tively. At each iteration, the previous θ is used to determine
the optimized layout (using the method described in the next
subsection) followed by determining the new θ that minimizes
the G(θ). The final θ is obtained by repeating this over several
iterations and is used for energy computation in subsequent
layout optimization.

5.3 Layout Optimization
Given a set of design elements X and the learned weights θ ,
the task is to arrange these elements in a layout with the least
total energy. For this multi-variable problem involving highly
coupled constraints, we use a simulated annealing approach
[21, 1] since our search space is discrete. Though there are
many optimization algorithms, including hill climbing, gra-
dient descent, etc., the advantage of simulated annealing is
that it avoids getting stuck in local minima/maxima even with
complex optimization functions.

Zhang et al. [32] noted that initialization in such inverse opti-
mizations play a key role and bad initialization can seriously
impact the optimization. Therefore, the layout is first initial-
ized based on tree-of-parzen-estimator [6] based optimization
and its energy is computed. This gives a good initialization for
faster convergence and is better than a random initialization.
The algorithm then proceeds to explore various proposals and
a move is considered to be a good one if the energy decreases
from the current layout to the proposed layout. All good transi-
tions are accepted and bad transitions are accepted with some
probability. The process is repeated across several iterations to
reach the layout with optimal energy. In the initial iterations,
the probability of accepting higher energy layouts is more,
thus avoiding local minima. This threshold is annealed (or
decreased) as the optimization progresses so that only changes
that lower the energy are preferred.

The following proposals were executed to adjust the elements
and decrease various components of the energy function:



• Alignment: This proposal picks up two design elements
randomly and aligns them on one of the alignment axes.

• Overlapping Elements: It picks up two elements and checks
whether these elements have a common area and ensures
that they are separated.

• Update Height/Width: This proposal alters the height/width
of a randomly chosen design element.

• Update Single Element Position: This proposal randomly
picks up any design element and shifts its position by a
certain distance in both x and y directions.

• Swap Elements: This proposal randomly swaps the location
of two elements.

5.4 Evaluating the layout optimization
Figures 6d, 6e and 6f show some sample banners from our
algorithm. It can be seen that the proposed algorithm produces
reasonable layouts. However, the text on top of images are not
visually pleasing, since we do not consider image saliency in
our energy computation - e.g. the font colour in Fig. 6d, the
text overlap in Fig. 6f. While this can be addressed via our
framework, defining an appropriate energy metric for saliency
and corresponding proposals are a subject of further research.

To formally evaluate the proposed framework, we create a
large number of machine-generated banners. We begin with
identifying banners with the same number of design elements
in our dataset. Retaining the content of the original banner,
we optimize the other banners to arrive at different layout
combinations resulting in different variants of the input banner.
We deployed a human experiment to compare the goodness of
the optimized banners against human-generated banners.

Every user is presented with a random banner image - either
machine-generated or designer-generated. The annotators are
asked to rate the alignment, overlap, spread and overall aes-
thetics of the banners on a 5−point Likert scale with the items
Very poor, Poor, Neutral, Good and Very good. To maintain
the quality of the annotations, workers are restricted to those
with 95% acceptance over a minimum of 200 annotations. Ev-
ery annotator rated a single image and are asked to describe
the banner in order to further filter out arbitrary annotations.
This crowd-sourced experiment is performed on 30 machine-
generated and 30 designer banners. Each banner is evaluated
by 5 different AMT workers and every successful annotation
is awarded 5¢. The ratings are summarized in Table 2. Sample
designer and machine-generated banners from our survey are
shown in Figure 6.

Aspect Alignment Overlap Spread Overall

Designer 3.705 4.093 3.899 4.046
Machine 3.854 3.806 3.806 3.733

Table 2: Average user ratings on a scale of 1-5

It is evident from Table 2 that banners generated from our
algorithm, which received a mean rating of 3.73, perform
comparable to designer banners with a mean rating of 4.05.
There are considerable variations in the assessment of specific

visual qualities like alignment and overlap. The alignment
score improved from designer banners to our banners whereas
overlap between elements was found to be higher for machine-
generated banners. The reason for this is that alignment is
primarily an objective metric which depends only on the lo-
cations and sizes of the design elements, and not the content.
Overlap, on the other hand, is a more subjective metric that is
not independent of the content. For example, consider the text
boxes of figures 6a and 6f, both of which are placed on top of
images, thereby resulting in complete overlap. But the overlap
in 6a is not displeasing because it is situated over the image
background. In 6f however, the text interacts with the image
foreground and causes uneasiness. As mentioned before, our
current framework is content agnostic and taking the image
saliency into account requires defining an appropriate energy
metric and proposals to optimize the metric and is a subject
of further research. These comparative annotations indicate
that the proposed method can help in providing compelling
starting points for a novice designer.

6. CONCLUSION & FUTURE WORK
In this paper, we have studied the problem of transferring the
user’s content into a sample banner. Our algorithm uses a
semantic segmentation based framework to first extract the
underlying template. Once the user-content is entered into the
layouts, we have energy-based optimization to fine-tune the
layouts with the user content.

While we have outlined our algorithm to take a single banner
into account, our algorithm can also be extended to optimize
the design elements from multiple banners. Fig 7. shows
an example where elements from 2 distinct banner images
were combined and optimized using our algorithm - however,
we manually selected the elements from individual banners.
Automatically identifying the right subset of elements from
each of the banners to be combined into an aesthetic banner is
part of future research.
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